Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngorhinootologie ; 2024 Mar 12.
Artigo em Alemão | MEDLINE | ID: mdl-38471543

RESUMO

Aviation is among the social sectors most impacted by the COVID-19 pandemic, and at the same time has contributed to the rapid global spread of the SARS-CoV-2 virus. SARS-CoV-2 is one of the coronaviruses that have led to outbreaks such as MERS-CoV in the past. This group of pathogens, as well as others that may be unknown at this time, will continue to challenge our society in the future. In order to be able to react better, a research training group was established at DLR in cooperation with 6 institutes, which will develop interdisciplinary approaches to researching and combating current and future pandemics. Engineers, physicists, software developers, biologists and physicians are working closely together on new concepts and the development of interdisciplinary knowledge in order to better control and contain future pandemics and to be able to react in a more targeted manner. One focus is the reduction of germ contamination in airplanes but also in other means of public transport such as buses and trains. In this review, we provide an overview of the baseline situation and possible approaches to address future pandemic challenges.

2.
Appl Opt ; 62(27): 7127-7138, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37855566

RESUMO

The propagation of laser radiation over long distances can be significantly affected by atmospheric extinction due to precipitation as well as aerosol particles and molecules. The knowledge of the contribution of precipitation is critical to the operation of a variety of laser-based systems. The study of high-power laser transmission around 1 µm is of particular interest because several atmospheric transmission windows are located in this region. To investigate the effect of adverse weather conditions on laser transmission, free-space laser transmission experiments are conducted on the DLR test range in Lampoldshausen, Germany. A high-power laser with a wavelength of 1.03 µm is used for the transmission measurements in combination with calibrated power monitors. Local weather conditions are continuously monitored by meteorological instruments during the experiments. Extinction coefficients are derived from transmission measurements showing that the extinction for snow is 7 times higher than for rain, and the extinction for drizzle/rain is 4 times higher than for rain at a given precipitation rate of 1 mm/h. For a mixture of rain and snow, the extinction is comparable to that of rain, indicating that the water content strongly influences the optical properties and thus the extinction of laser radiation in mixed precipitation. A good relationship is found between the measured extinction coefficient and visibility for drizzle and rain and a slightly larger scatter of the data for snow. Furthermore, measured extinction coefficients are compared to the extinction coefficients based on the experimental size distributions of precipitation particles and geometric optics. A reasonable agreement is obtained for rain, with no improvement taking the forward-scattering into the detector aperture into account, and a much better agreement is obtained for snow when the forward-scattering contribution is included.

3.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298189

RESUMO

The increasing number of terrorist attacks within the last decade has demonstrated that taking preventive protective measures is highly important. In addition to existing measures, automated detection systems for fast and reliable explosive detection are required. A sensitive spectroscopic system based on mid-infrared spectroscopy has been developed and applied to explosive samples on different types of fabric under various geometric conditions. Using this system, traces of TNT, RDX, PETN and ammonium nitrate can be detected in less than a second. Various approaches for data pretreatment (wavelength calibration) and subsequent analysis (normalization, removal of atmospheric water absorption lines) are presented and the remaining challenges on the road to a fully automated system, including a robust classification algorithm, are discussed.


Assuntos
Substâncias Explosivas , Têxteis , Análise Espectral , Calibragem , Água
4.
J Biomed Opt ; 27(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35643871

RESUMO

SIGNIFICANCE: Fast and reliable detection of infectious SARS-CoV-2 virus loads is an important issue. Fluorescence spectroscopy is a sensitive tool to do so in clean environments. This presumes a comprehensive knowledge of fluorescence data. AIM: We aim at providing fully featured information on wavelength and time-dependent data of the fluorescence of the SARS-CoV-2 spike protein S1 subunit, its receptor-binding domain (RBD), and the human angiotensin-converting enzyme 2, especially with respect to possible optical detection schemes. APPROACH: Spectrally resolved excitation-emission maps of the involved proteins and measurements of fluorescence lifetimes were recorded for excitations from 220 to 295 nm. The fluorescence decay times were extracted by using a biexponential kinetic approach. The binding process in the SARS-CoV-2 RBD was likewise examined for spectroscopic changes. RESULTS: Distinct spectral features for each protein are pointed out in relevant spectra extracted from the excitation-emission maps. We also identify minor spectroscopic changes under the binding process. The decay times in the biexponential model are found to be ( 2.0 ± 0.1 ) ns and ( 8.6 ± 1.4 ) ns. CONCLUSIONS: Specific material data serve as an important background information for the design of optical detection and testing methods for SARS-CoV-2 loaded media.


Assuntos
COVID-19 , SARS-CoV-2 , Fluorescência , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
5.
Sensors (Basel) ; 20(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365598

RESUMO

Laser-induced fluorescence (LIF) is a well-established technique for monitoring chemical processes and for the standoff detection of biological substances because of its simple technical implementation and high sensitivity. Frequently, standoff LIF spectra from large molecules and bio-agents are only slightly structured and a gain of deeper information, such as classification, let alone identification, might become challenging. Improving the LIF technology by recording spectral and additionally time-resolved fluorescence emission, a significant gain of information can be achieved. This work presents results from a LIF based detection system and an analysis of the influence of time-resolved data on the classification accuracy. A multi-wavelength sub-nanosecond laser source is used to acquire spectral and time-resolved data from a standoff distance of 3.5 m. The data set contains data from seven different bacterial species and six types of oil. Classification is performed with a decision tree algorithm separately for spectral data, time-resolved data and the combination of both. The first findings show a valuable contribution of time-resolved fluorescence data to the classification of the investigated chemical and biological agents to their species level. Temporal and spectral data have been proven as partly complementary. The classification accuracy is increased from 86% for spectral data only to more than 92%.


Assuntos
Monitoramento Ambiental , Substâncias Perigosas/análise , Algoritmos , Fluorescência , Lasers , Espectrometria de Fluorescência
6.
Appl Opt ; 51(18): 4219-23, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22722301

RESUMO

The properties of a laser beam coupled out of a standard unstable laser resonator are heavily dependent on the chosen resonator magnification. A higher magnification results in a higher output coupling and a better beam quality. But in some configurations, an unstable resonator with a low output coupling in combination with a good beam quality is desirable. In order to reduce the output coupling for a particular resonator, magnification fractions of the outcoupled radiation are reflected back into the cavity. In the confocal case, the output mirror consists of a spherical inner section with a high reflectivity and a flat outer section with a partial reflectivity coating. With the application of the unstable resonator with reduced output coupling (URROC), magnification and output coupling can be adjusted independently from each other and it is possible to get a good beam quality and a high power extraction for lasers with a large low gain medium. The feasibility of this resonator design is examined numerically and experimentally with the help of a chemical oxygen iodine laser.

7.
Appl Opt ; 50(1): 11-6, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21221153

RESUMO

The application of an off-axis negative-branch unstable resonator to an active medium of rectangular geometry is examined. The presented unstable resonator consists of spherical mirrors and a scraper mirror. The adaptation to the rectangular cross section is performed by the scraper, which takes two different shapes. One shape resembles a rectangular bracket "[" and the other resembles the letter "L." The [ and L configurations correspond to a shift of the optical axis away from the center of the cross section, toward one of the edges or toward one of the corners, respectively. Both scraper setups are examined numerically and experimentally. Experiments are performed with a multikilowatt class chemical oxygen iodine laser. The active medium is characterized by a low amplification coefficient. Measured results of the intensity distribution in the far field and of the phase distribution in the near field are shown for both resonator configurations. Using the same resonator magnification, the setup with the L-shaped scraper has a lower output coupling and, therefore, a higher output power and a slightly higher beam divergence. The L-shaped scraper configuration is able to cover the gain medium completely.

8.
Appl Opt ; 47(35): 6644-9, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19079475

RESUMO

A double-pass negative-branch hybrid resonator is applied to a 10 kW chemical oxygen iodine laser. The resonator is folded in such a way that the dimension of the stable direction is reduced. The intensity distributions of the near and far fields of the laser beam and the sensitivity against tilts of the output mirror are investigated. A comparison between theory and experiment is performed. It is shown that the folded hybrid resonator provides a better beam quality and therefore a higher power density in the far field than a single-pass hybrid resonator. The sensitivity against tilts of the resonator mirrors in the stable direction is reduced.

9.
Appl Opt ; 46(31): 7751-6, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17973020

RESUMO

A modified negative branch confocal unstable resonator (MNBUR) was coupled to the chemical oxygen-iodine laser (COIL) device of the German Aerospace Center. It consists of two spherical mirrors and a rectangular scraper for power extraction. Experimentally measured distributions of the near- and far-field intensities and the near-field phase were found in close agreement to numerical calculations. The extracted power came up to approximately 90% of the power as expected for a stable resonator coupled to the same volume of the active medium. The output power revealed a considerable insensitivity towards tilts of the resonator mirrors and the ideal arrangement of the scraper was found to be straightforward by monitoring the near-field distributions of intensity and phase. The beam quality achieved with the MNBUR of an extremely low magnification of only 1.04 was rather poor but nevertheless in accordance with theory. The demonstrated consistency between theory and experiment makes the MNBUR an attractive candidate for lasers that allow for higher magnification. In particular, it promises high brilliance in application to 100 kW class COIL devices, superior to the conventional negative branch confocal unstable resonator.

10.
Appl Opt ; 45(34): 8777-80, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17119575

RESUMO

A new type of unstable resonator, suitable for a laser with a large medium cross section and a small or median output coupling, is presented. The resonator configuration, a modification of a negative-branch confocal unstable resonator, is numerically investigated. The basis of the theory is the Fresnel-Kirchhoff integral equation, and the calculations describe a passive resonator. With respect to output mirror tilting, the calculations confirm that the modified negative-branch confocal unstable resonator is less sensitive to mirror misalignments than the conventional negative-branch confocal unstable resonator. Furthermore, the modified resonator improves the beam quality in comparison with the conventional unstable resonator.

11.
Appl Opt ; 45(16): 3831-8, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16724146

RESUMO

A rectangular negative branch off-axis hybrid resonator was coupled to a 10 kW class chemical oxygen-iodine laser. Resonator setup and alignment turned out to be straightforward. The extracted power was 6.6 kW and reached approximately 70% of the power for an optimized stable resonator. The divergence of the emitted laser beam in the unstable direction was lower than two times the diffraction limit. Experimentally measured margins for mirror misalignment were found in close agreement with numerical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...